Opto-acoustic Relative-Colorization of Blood Oxygen Saturation in Biologically Relevant Phantoms

Jason Zalev^{1,2}, Bryan Clingman¹, Jeff Harris¹, Allison Bertrand¹, Edgar Cantu¹, Xavier Saenz¹, Steve Miller¹, Lisa Richards¹, Alexander A. Oraevsky³, Michael C. Kolios²

¹Seno Medical, Inc., San Antonio TX, USA
²Department of Physics, Ryerson University, Toronto, Canada
³Tomowave Laboratories, Houston TX, USA

SPIE Photonics West February 5, 2019

TomoWave

Laboratories, Inc

Opto-acoustic Imaging

Pivotal Study

findings from clinical study of 2100 subjects

OA improved specificity to distinguish benign from malignant lesions

(source: Neuschler, E. et al. "A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists.". In: Radiology 287.2 (2018), pp. 398–412)

3 / 19

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Motivation

for today's talk

• blood oxygen saturation (sO₂) is an important parameter for assessing differences between benign and malignant lesions

Motivation

for today's talk

- blood oxygen saturation (sO₂) is an important parameter for assessing differences between benign and malignant lesions
- accurate diagnosis involves proper interpretation of **color mapped images** and an understanding of how images relate to tumor physiology

Motivation

for today's talk

- blood oxygen saturation (sO₂) is an important parameter for assessing differences between benign and malignant lesions
- accurate diagnosis involves proper interpretation of **color mapped images** and an understanding of how images relate to tumor physiology
- necessary to perform **system characterization** that relates RGB image colorization to known oxygen saturation values

Opto-acoustic Images

(a) benign lesion (fibroadenoma)

(b) malignant lesion (grade II invasive ducal carcinoma)

(source: Zalev, J. et al. "Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study". In: SPIE Medical Imaging. International Society for Optics and Photonics. 2015, pp. 941909–941909)

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Opto-acoustic Images

(a) benign lesion (fibroadenoma)

(b) malignant lesion (grade II invasive ducal carcinoma)

(source: Zalev, J. et al. "Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study". In: SPIE Medical Imaging. International Society for Optics and Photonics. 2015, pp. 941909–941909)

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Objective

• develop an approach for characterizing **relative colorization** of blood oxygen saturation

Objective

- develop an approach for characterizing **relative colorization** of blood oxygen saturation
 - perform quantitative measurement using biologically relevant phantoms and bovine blood at controlled oxygenation levels

Objective

- develop an approach for characterizing **relative colorization** of blood oxygen saturation
 - perform quantitative measurement using biologically relevant phantoms and bovine blood at controlled oxygenation levels
 - assess the ability to distinguish small differences in oxygenation as the oxygenation level is varied

how it works

how it works

• analyzes statistics of reference region of each image to automatically determine color scaling and offset parameters

how it works

- analyzes statistics of reference region of each image to automatically determine color scaling and offset parameters
- performs color mapping to display opto-acoustic contrast using **relative colorization**

how it works

- analyzes statistics of reference region of each image to automatically determine color scaling and offset parameters
- performs color mapping to display opto-acoustic contrast using **relative colorization**
- visualizes structural and functional information from areas of strong blood oxygenation and total hemoglobin **relative to background tissue**

relative colorization of blood oxygen saturation

Statistical Color Mapping relative colorization of blood oxygen saturation sO₂ sO sO₂ oxygenated 100% 100% 100% +1 oxygenated 0 0 80% 80% 80% -1 -1 deoxygenated 60% 60% 60% deoxygenated c) a) b)

Statistical Color Mapping relative colorization of blood oxygen saturation sO sO sO oxygenated 100% 100% 100% oxygenated 0 80% 80% 80% deoxygenated 60% 60% 60% deoxygenated c) a) b)

 \bullet color midpoint corresponds to average sO_2 value of reference region

Statistical Color Mapping relative colorization of blood oxygen saturation sO sO oxygenated 100% 100% 100% oxygenated 0 80% 80% 80% deoxygenated 60% 60% 60% deoxygenated c) a) b)

- color midpoint corresponds to average sO_2 value of reference region
- color limits determined by sO_2 variability of reference region

Biologically Relevant Phantoms

optical and acoustic properties emulate breast tissue

Phantom properties				
Material	PVCP (plastisol)		
Optical Properties Absorption μ_a (1/cm) Scattering μ_s' (1/cm)	757 nm 0.47 ± 0.10 9.18 ± 0.06	1064nm 0.82 ± 0.38 5.89 ± 1.35		
Acoustic Properties Speed of sound (m/s) Attenuation (dB/cm)	$\begin{array}{c} 1477\\ 0.8-8.2 \end{array}$			
Vessel depth Vessel diameter	15mm 1.6 mm			

Experimental Setup

two independent tracks of bovine blood at controlled oxygenation levels

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

low

low

low

low

high

high

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

SPI

12 / 19

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Effect of Varying sO_2 on RGB Color

Experiment 1 (repetition)

16 21

26 31

36

66. 71

76

81 86

91. 96. 101.

106

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Vessel 1 (left) is **held constant** as reference Vessel 2 (right) is **varied**

 $\Delta[\mathrm{sO_2}] = 60\%$

color distinction depends on sO_2 difference between the vessels

Vessel 1 (left) is **held constant** as reference Vessel 2 (right) is **varied**

color distinction depends on $sO_2\ difference$ between the vessels

Vessel 1 (left) is **held constant** as reference Vessel 2 (right) is **varied**

color distinction depends on $sO_2\ difference$ between the vessels

Vessel 1 (left) is **held constant** as reference Vessel 2 (right) is **varied**

color distinction depends on $sO_2\ difference$ between the vessels

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Effect of Varying sO₂ on RGB Color Distinction

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

15 / 19

Effect of Varying sO₂ on RGB Color Distinction

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Effect of Varying sO₂ on RGB Color Distinction

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Conclusion

• proposed a technique to characterize the ability to distinguish small differences in blood oxygen saturation when using relative colorization

Conclusion

- proposed a technique to characterize the ability to distinguish small differences in blood oxygen saturation when using relative colorization
- measuring effects of additional parameters (vessel depth, hematocrit, etc.) on ΔM will be most effective if one reference vessel is held at constant sO₂

Conclusion

- proposed a technique to characterize the ability to distinguish small differences in blood oxygen saturation when using relative colorization
- measuring effects of additional parameters (vessel depth, hematocrit, etc.) on ΔM will be most effective if one reference vessel is held at constant sO₂
- in PVCP phantom with reference vessel at 99% sO₂, the image colorization threshold ΔC was reached at sO₂ difference ΔM of 4.6%

Future Work

- perform additional measurements and characterize ΔM while varying:
 - blood hematocrit level
 - vessel depth

References I

- Dash, R. K. and Bassingthwaighte, J. B. "Erratum to: blood HbO 2 and HbCO 2 dissociation curves at varied O 2, CO 2, pH, 2, 3-DPG and temperature levels". In: Annals of biomedical engineering 38.4 (2010), pp. 1683–1701.
- [2] Neuschler, E. et al. "A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists.". In: *Radiology* 287.2 (2018), pp. 398–412.
- [3] Vogt, W. C. et al. "Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties". In: *Journal of biomedical optics* 21.10 (2016), p. 101405.
- Zalev, J. et al. "Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study". In: SPIE Medical Imaging. International Society for Optics and Photonics. 2015, pp. 941909–941909.
- Zalev, J. and Clingman, B. Statistical mapping in an optoacoustic imaging system. US Patent 9,330,452.
 2016.

Acknowledgement

Breast Tissue Properties

	Optical properties		Acoustic properties	
	Absorption	Reduced scattering	Speed of sound	Acoustic attenuation
	coefficient (cm $^{-1}$)	coefficient (cm $^{-1}$)	(m/s)	coefficient (dB/cm)
General soft tissue	0.1 - 0.5	10 - 20	1450 - 1575	0.5 - 30
Breast fat	0.05 - 0.3	3 - 8	1430 - 1480	1 - 18
Breast parenchyma	0.1 - 0.3	5 - 15	1460 - 1520	2 - 25
Blood	2.0 - 10.0	10 - 15	${\sim}1560$	0.1 - 2

Optical and acoustic properties of representative soft tissues. Optical properties cover a spectrum from 600 to 900 nm, while acoustic properties span 1 to 10 MHz. (source: Vogt, W. C. et al. "Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties". In: *Journal of biomedical optics* 21.10 (2016), p. 101405)

Oxygen dissociation curves Influence of Temperature, CO₂, DPG and pH

source: Dash, R. K. et al. "Erratum to: blood HbO 2 and HbCO 2 dissociation curves at varied O 2, CO 2, pH, 2, 3-DPG and temperature levels". In: Annals of biomedical engineering 38.4 (2010), pp. 1683–1701

21 / 19

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Optical Absorption

Optical absorption coefficient for primary chromophores of tissue in near-infrared optical spectrum. It is indicated that at 757nm, deoxy-hemoglobin absorbs light more strongly that oxy-hemoglobin. At 1064nm, oxy-hemoglobin absorbs light more strongly than deoxy-hemoglobin (adapted from: www.senomedical.com).

SPIE Photonics West - Photons Plus Ultrasound - Feb 5, 2019

Zalev et al.